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Abstract 

The present paper deals with the analysis of the meaning and of the role of space-time 
quanta. A consistent mathematical description of the non-transitive binary 'equivalence' 
is obtained. In connection with the existence of certain threshold velocities some 
peculiarities of the high-energy behaviour of scattered nucleons are explained. 

1. Introduction 

It has been accepted that physical space and time may be defined only 
in the presence of microparticles. Under these conditions the microparticles 
maintain their 'starting' individuality so far as the possibility of performing 
the 'starting' quanto-mechanical space-time description is assured. Con- 
sequently, i fa  failure within the space-time description arises, some changes 
in the individuality of  the microparticles are implied. 

Along the line of  the above considerations meaning and role of the 
space-time quanta are analysed. At low energies, the existence of a possible 
structure of the microparticle may be neglected since the binding energies 
of  the constituents are larger than their kinetic energies (Kuti, 1971). 
At high energies this does not follow, in such a situation the space-time 
quanta--which were defined in connection with the existence of  a single 
'elementary' particle (Papp, 1971, 1972a, 1972b)--become non-suitable 
to be attributed to a system of constituents. Otherwise it may be stated 
that the 'starting' space-time quanta loses---as a result of the kinetic energy 
excess--their initial reason. Moreover, space-time compatibility ceases to 
be preserved. Assuming that at high energies the role of a certain structure 
of the 'elementary' particle ceases to be negligible, the interaction products 
are generally different at high energies than at low energies. In this sense, 
the low-energy elastic scattered microparticle is generally substituted, with 

Copyright �9 1973 Plenum Publishing Company Limited. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo- 
copying, microfilming, recording or otherwise, without written permission of Plenum Publishing Company 
Limited. 

429 



430 E. PAPP 

the increase of energy, by a many microparticle system of interaction 
products. Consequently, when collision processes of sufficiently high 
energy are considered, the space-time description of the scattered particle 
is that one which has to be redefined and set in agreement with the new 
experimental situation. Conversely, the failure of the space-time description 
of the elastically scattered particle allows one to suppose the existence of a 
new experimental situation. 

The above considerations wilt be proved in the case of the scattered 
nucleons. This is, in fact, the case in which many relevant high-energy data 
were recently acquired (see for example K6gerler, 1972). We have to 
mention that the peculiarities of the high-energy behaviour of scattered 
nucleons were already predicted by Heisenberg (1938). 

We shall begin by proposing a mathematical model for the binary 
description (K~ilnay & Toledo, 1967) and for the non-transitive binary 
'equivalence'. Scale invariance behaviour, action quantization, space-time 
operators, and space-time quanta are then analysed. Using some results 
of space-time compatibility, there is the possibility of predicting some 
aspects of the high-energy behaviour of the scattered nucleon. 

Neglecting the spin of the nucleon we shall describe it by means of a 
K-G field. Throughout this paper the scattered nucleon is considered in 
the centre-of-mass system. We shall take h = c = 1, except in some self- 
evident cases. 

2. Binary Description and Binary 'Equivalence' 

As has been proved by K~ilnay (1967, 1971) the use of binary variables 
represents a suitable tool in order to express the result of space-time 
measurements. The binary variables offer, through their own meaning, 
the possibility of making explicit the imprecision boundary of the measure- 
ment (Papp, 1971, 1972). 

The use of the binary variables implies apparent peculiarities so that 
the mathematical description and the interpretative formalism must be 
adequately defined. In this respect, taking into consideration the binary 
evaluation e -  ifl, where/~ > 0, we may propose, in order to define the 
measurable meaning, the following mathematics: 

(a) The binary variable e - i/~ describes the measurement in which the 
result e within the imprecision ]~ is obtained. In agreement with 
K~,lnay & Toledo (1967) the binary variable defines the segment 
[e - /3,  e +/?] on the e-axis. This segment also has to be considered 
to express the result of the measurement. 

(b) If  [e[ </~ the binary evaluation does not possess measurable meaning. 
(c) If  fl < [e] < 313 we have to consider that its measurable meaning is 

undetermined. 
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(d) If  ]el ~> 3fl the binary evaluationpossesses a well-defined measurable 
meaning. 

(e) Two binary evaluations el - ifl and e2 - ifl are binarily 'equivalent' 

if 
[e l  - e2l ~< 2fl  (2 .1 )  

If  two binary evaluations are binarily 'equivalent' we shall consider 
that they refer to the same measurement, i.e. to the same experimental 
situation. 

We remark that point (c) avoids binary 'equivalence' between 
binary evaluations which possess and those which do not possess (a 
well-defined) measurable meaning. Thus, the role of  point (c) is 
well established. One can easily observe, in agreement also with 
March (1941), that the binary 'equivalence' generally does not satisfy 
the transitivity property. Indeed, if le~ - e2] ~< 2fl and 1(~2 - -  ~3[ ~ 2fl, 
the inequality ]al -- C~a] ~< 2fl is not necessarily implied, in this sense, 
the non-transitivity of the binary 'equivalence' may be considered 
as a representative peculiarity of  the quanto-mechanical description 
of  micropartMes. 

(f) We now have to analyse the conditions in which two binary evalu- 
ations, which do not possess the same imaginary part, may be 
considered as binarily 'equivalent'. In this respect we may assume 
that the result of a measurement given by e - 2 i f l  may be expressed 
under the form of the set: 

_ _ - - (2.2) 

The set 99~ (2~ and the binary evaluation c~- 2 i f l  define on the 
a-axis the same segment [e - 2fl, c~ + 2fl]. The result of the measure- 
ment being a region in space, both the set 9)~ (2) and c~- 2 i f l  give a 
description of the same measurement, in this respect one needs to 
mention that the binary evaluations ~ - f l  - i f i ,  c~ - i f l  and ~ + f i  - ifl  
can describe the same measurement as they are binarily 'equivalent'. 

Considering the binary evaluation a - in f l ,  where (for instance) n 
is an integer larger than 2, we may formally decompose it in the form 
of the set 

g)l(") - {c~ - ( n -  l) f l -  ifl . . . . .  c~ + ( n -  1 ) f i -  ifl} (2.3) 

It may be verified that between the elements of the set ~ " )  there 
exists a number 

D n = 2n 2 - 7n + 6 (2.4) 

of  relations of  binary 'non-equivalence'. Consequently--excepting 
the cases in which n = ~ and n = 2 (when D, = 0)--the elements of  
the set ~~ do not refer to the same measurement, in these conditions 
it may be considered that the binary evaluations ~ - i f i l  and ~ - ifl2 
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where flz > fl~ are binarily 'equivalent' only if flz = ~fll or flz = 2fll. 
However, generalizing the above result, we may define--at least as 
an example--an extended binary 'equivalence' relation requiring 
that f12 < 2fll. The above statements do not conflict with the con- 
ditions (b)-(d). 
The binary evaluations e - ifi and a + ifl are 'identical' as the same 
imprecision fi refers to the same 'observable' evaluation c~. 

Particularly, the evaluations 3 f l - i f l  and 5 f l -  ifl are binarily 
'equivalent' and possess a well-defined measurable meaning. Con- 
sequently, the most representative 'observable' evaluation, corre- 
sponding to the first'equivalence class' of  meaningful binary variables, 
is given by 4ft. 

3. Scale Invarianee Behaviour 

Let us consider the scale invariant field 

;~. oS(~x) = v*(;O , ( x )  u(,~) (3.1) 

where U(2) is an unitary operator, ). = 1 - e (0 < e < 1), and where d gives 
the dimension of the field (Wilson, 1970). 

Considering a K-G field and supposing that the scale invariance 
behaviour is exclusively supported by the rest mass mo: 

mo -+ mo' = ,~-1 mo - mo + ~mo (3.2) 
so that 

(P,Po) -+ (P',Po') = 2-~(P,Po) (3.3) 

one obtains, using the usual expansion (Bjorken & Drell, 1965), the result 
that the annihilation operator a<+)(p) transforms as follows: 

2 d-s/2 a(+)0.-1 p) = u*Oo) a(+)(p) U(2) (3.4) 

At a well-defined value of the angular momentum the above relation 
becomes 

2 a-3/2 a~+)(2-1p) = U*(2) a~+)(p) u O 0  (3.5) 

where p - ]p[ and where a rotation symmetry of the annihilation operator 
around a certain axis has been assumed. 

In this latter case 
a(+)(p) = p-1 ~ Yz. o(vers p. vers k) a~+)(p) (3.6) 

l 

where versk expresses the unit vector of the symmetry axis. Setting d = 3, 
the scale invariance becomes a symmetry operation. 

We may thus conclude---in agreement with (3.2)--that the existence of 
a particle production process is able to support the existence of the scale 
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invariance behaviour. In this respect some calculations may be performed 
approximately. 

Indeed, the rest mass increase, corresponding to a certain kinetic energy 
Apo, is approximately given by 

Amo 2moPo. 2mo _ 
"~ p2 ~Po V(1- ~ V2) 3 v  (3.7) 

In agreement with the space-momentum uncertainty relation we may 
consider that the 'minimum' value of the velocity uncertainty Av is given by 

h 
Av,, 2too Ax (1 - v2) 3/z (3.8) 

where Ax ~ 10 -13 cm represents the interaction radius of strong interacting 
particles. Then we will obtain around v ~0.6c, Av,, ~,0-06e so that 
Amo ~ 150 MeV. But this rest-mass increase expresses an acceptable 
approximation of the pionic rest mass. In these conditions we may consider 
that, in the case of the scattered nucleon, the kinetic energy excess implies 
a single pion production. Such a process can arise as soon as the scattered 
nucleon takes--in the approximation considered--an energy around 
1200 MeV. This energy is in reasonable agreement with the results con- 
cerning the excitation of the nucleonic N*-resonance (see for example 
Schultze, 1971; Zucker, 1971). 

Thus, at the threshold of the single-pion production, the parameter e 
has to take approximately the value 

Amo 2(Tpp ~ 26~+) ~ (3.9) 
mo -Axx ,=Axx 

where a well-defined value of the angular momentum has been assumed 
and where the quantity 6~+)g expresses the total space quantum. By means 
of the above relation we may assume that the nucleon constituents which 
are nearer to the nucleon 'centre' must possess a larger rest mass than the 
pion, so that--a t  sufficiently large energies--the emission of the heavy 
constituents is also expected, in these conditions the problem to define the 
hadronic mass spectrum is formally reduced to the defining problem of the 
e-spectrum, i.e. of the 6~+)g-spectrum. 

4. Peculiarities of  the Quantum-mechanical Action 

The scale transformation of the one-particle amplitude 

gt(P) = (0la}+>(p) l ~') (4.1) 
where ] ~  expresses the general state of the K-G field, is given in agreement 
with (3.5) by 

g,(2-1p) = (0[a}+)(p) U(2)] ~)  = Up(2)g,(p) (4.2) 
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where d = ~. The operator G,(2) so introduced expresses the quantum- 
mechanical unitary operator of the scale transformation. 

Similarly, the one-particle amplitude in the energy representation 
transforms as 

g~(2-1po) = (0[aJ+)(po) U(2)1~5 -= Upo(2)~,,(po) (4.3) 

where ~i+)(Po)= X/(Po/p)a~+)(P). On the other hand--irrespective of 
(3.5)--the relations 

g,(,~-lp) = exp[-ln2p~]g,(p) (4.4) 

and also 

g,(;~-lpo) 

are valid. Consequently, up to the factor )~-~, the pr-action operator and 
the pot-action operator are stated as Hermitian observables in the p- 
momentum and respectively in the energy representation. Using the rela- 
tions (4.4) and (4.5) the unitary operators Up(2) and respectively Upo(2 ) 
may be easily identified. 

Passing from the p-momentum representation to the energy representa- 
tion, the Hermitian space operator i(d/dp) becomes a binary operator 
(Papp, 1971, 1972a). In these conditions we cannot pass from the p- 
momentum representation to the energy representation without implying 
the existence of the real space quantum �89 

Consequently, in spite of the fact that the relations (4.2) and (4.3) are 
both 'equivalent' to the relation (3.5), there is no 'equivalence' between 
(4.2) and (4.3), because within the energy representation the existence of 
the real space quantum cannot be ignored. 

Ignoring the existence of the space quantum and imposing the require- 
ment that (4.2) and (4.3) have to be 'equivalent', rather unphysical results 
would be obtained. 

Indeed, using the approximations 

0 0 
Up()0 -~ 1 + ep~pp, Upo(2 ) = 1 + epo Opo (4.6) 

the relations (4.4) and (4.5) become 'equivalent' only if 

{po ~ d d mo ~ )_  
gt(Po) = 0 \ ~ d p  dp 2~oZ p- (4.7) 

where the explicit existence of the real space quantum may be observed. 
In these conditions 

~l(Po) = �89 + const (4.8) 

and such a function is not able to perform a quantum-mechanical wave- 
packet description of  a single K-G particle because of its divergence at 
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infinity. Conversely there is no physical object which can be described by 
such a divergent function. 

Consequently, within a meaningful physical description performed in 
the energy representation, the existence of the real space quantum cannot 
be neglected. Similar results will be obtained if the 'equivalence' of the 
relations (4.2) and (4.3) is tested passing from the energy representation to 
that of the p-momentum. In this latter case the existence of the real time 
quantum cannot be ignored. 

5. Space-Time Quanta and Space-Time Operators 
Within the interpretative formalism of the binary variables the space 

and time quanta have to be identified with the imaginary parts of the 
corresponding binary entities. The quanta so obtained are--excepting the 
proper time quantum (Papp, 1972b)--observer dependent (Papp, 1972a). 

In these conditions the imaginary part of the usual binary time is given by 
the so-called real time quantum 

6~+, ~ I/too 2 \  = l - / P ~  1 1 
=2\p2po/  (5.1) 

Assuming the imprecision additivity it follows that there also exists the 
quantum 

!/po\ 
e = 2 \ p 2 / ,  (5.2) 

which, being larger than 6~ +) T, may be considered as the total time quantum. 
As a consequence of the existence of the above time quanta the real 

space quantum 
6~+) S l_/mo2\ 1 1 1 p 

exists and also the total space quantum 
1 / \ 1  

(5.4) 

The imprecisions so defined result from performing the averages of 
certain space-time operators with respect to the single particle amplitude 
g~(p) with the conditions 

limg~(p) = 0, limp-1/Zg~(p) = 0 (5.5) 
p-->co p-->O 

Taking into consideration the p-momentum representation, it may be 
proved that, besides the binary time operator i(d/dpo) leading to the 
imprecision 6~+)~ there exists the total time-operator 

T=i~o+i  1 (5.6) 

corresponding to the total time imprecision. 
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The binary space operator then takes the form 

�9 d m o  2 
S(t,) = t -~p + i 2ppo------ ~ (5.7) 

whereas the total space operator is given by 

.d _i_s 
2po 2 (5.8) 

In connection with the above results it may be mentioned that the 
condition (5.5) supports not only the existence of the binary space-time 
operators, but also the existence of the Hermitian time operator 

d m o  2 
T (*) " - - - - ' - -  (5.9) = tdpo t 2 p i p  ~ 

Consequently no binary space-time operators may be defined without 
assuming the fulfilment of the formal hermiticity condition of the time 
operator. In this way the binary operators may be stated as 'natural' 
extensions of the Hermitian observables; such operators preserve (effec- 
tively) the 'observability' property as soon as the boundary condition (5.5) 
is fulfilled. 

The real space-time operators and the total space-time operators are 
binarily 'equivalent' in the extended sense, up to the mean velocity [x/(2)/2] c. 
Denoting with Vo the mean velocity we shall obtain: 

6~ +) ~ < 26~ +~ s 
6~ +) "~ < 26~ +) z (5.10) 

for Vo ~< [V'(2)/2] c. Consequently, up to the mean velocity [X/(2)/2] c the 
real and the total space-time operators do not possess a separate measurable 
meaning. 

At a well-defined value of the angular momentum the total space operator 
possesses formally the same form as the previously defined Newton- 

Wigner position operator (Newton & Wigner, 1949). However, these 
operators are identical only in the presence of the boundary condition 
assuring the existence of the hermitic time operator T (*). 

We may consider that all the space and time quanta preserve their 
meaning only in respect of the existence of a certain lower bound. Con- 
versely, with increasing velocity, the space and time quanta become as 
small as possible, so that the measurements become as exact as possible. 
Such a result would contradict the quantum-mechanical significance of 
the space-time measurements. On the other hand the imprecision of the 
space-time measurements cannot be indefinitely decreased without affecting 
the existence of the system submitted to the measurement. Consequently 
the lower bound imposed to the space and time quanta has also to possess 
the meaning of a structural constant of the system. Such a constant must 
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be observer independent. Respecting the above considerations we may 
suppose the time constant to be identical with the proper time quantum 
(Papp, 1972b) 

h 
6 c z = 2mo c 2 (5.11) 

The space-constant should be given by 

h 
6~s = - -  (5.12) 

2mo e 

We may easily calculate that the above space and time constant are able 
to fulfil their limiting role respecting the space and time quanta. They also 
have the significance of natural space and time units (March, 1941). Indeed 

6~ +) s >~ 6C s, Vo < vs ~ 0.564c (5.13) 

6~ +~ z >~ 6cz, Vo < v~ ~ 0.656c (5.14) 

~/2 ~ 
6~ +) ~/> 6 ~ s, Vo < v~ = ~ c _ 0.707e (5.15) 

~+)~>~6~z, Vo<<.v~= 1 c-~0"786c (5.16) 

where the velocity on the right expresses the upper velocity value for 
which the inequality on the left is fulfilled. 

In these conditions the products of space and time quanta are also 
limited by the products of the space and time constants: 

~ , l  ~ ,  ~ 6 ~ s ,  Vo<V(~)-~c~-0"618e 
(5.17) 

(5.18) 

(5.19) 

6~+)s6~+~( ~- 6~+~g6~+)z) >~ 6cz6Cs, Vo < v(2~ ~- 0"671c 

6~ +~ g 5~ +~ ~ ~> 5 c z 6 ~ s, Vo ~< v~3~ ~ 0"755c 

For instance, seven presumptive threshold velocities are implied. The 
existence of  a set of threshold velocities may be considered as a result of 
using binary variables. However, there is the possibility of analysing the 
set in terms of the limitations involved by the space-time compatibility 
condition. 

6. Space-Time Compatibility 

All the previous results concerning space-time quantization are valid--  
because time is defined respecting space--only in the conditions in which 
space-time compatibility is assured. The space-time compatibility may be 
analysed either for non-zero values of the macroscopic time parameter t, 
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or for t = 0. In the first case it has been proved--using field-theoretical 
methods--that  the compatibility is fulfilled attributing to the t-parameter 
a binary meaning (Papp, 1973). In the second case there are implied 
other restrictions concerning validity and meaning of space-time quantiza- 
tion. 

Assuming space hermiticity the imprecision of the space-time measure- 
ment is taken over by time. In this respect the Hermitian space operator 
i(d/dp) is compatible with the binary time i(d/dpo) in the conditions in 
which the commutator 

= -moZp-2polip (6.1) 

does not possess measurable meaning. 
Performing the calculations it may be proved that 

( . , o  2 a,, ~too d . ,,, / m :  too2\ 
p--~o-~/) = t~p-~-o-d~ argg,tp)/2 + \p~-~o + ~p-~/ ,  (6.2) 

so that the condition (b) of Section 2 is fulfilled if 

/N(vo)  - 2 
Vo <f(vo)  ~ aC N(vo ) + 1 c (6.3) 

where the function N(vo) satisfies the equality 

d 
d(p), arggt((p)~) = N(vo) 6~+) s (6.4) 

For  N >  2 the ]:function takes real values and as df/dN > 0 it is an 
increasing function respecting N. In these conditions a lower bound of the 
]:function may be defined: taking into consideration only the well- 
measurable space-shifts we have to take N(vo) > 4 (see Section 2). In this 
case 

f(vo) > ~/(}) c - vc ~- 0"632c (6.5) 

This threshold velocity expresses the upper velocity for which--respecting 
well-measurable space-time evaluations--space-time compatibility is 
always assured. This fact means that, in the conditions in which for example 
the energy of  the scattered nucleon overpasses po(vc)~-1212 MeV,? the 
existing space-time description loses its reason for existence. 

The above results may also be obtained if we would assume that, in 
the high-energy domain (around Vo ~ vc ~ v0, the space shift of  the scattered 
nucleon behaves as 

d 
d(p)z arggz((p)~) - N5~ +) s (6.6) 

"~ Performing numerical calculations we shall consider for simplicity only the rest 
mass of the neutron. 
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where N actually expresses a parameter not depending on velocity. The 
above inequality also expresses the manner in which the real space quantum 
(and more exactly the real time quantum) realises its role of a natural space 
unit. In this situation, using (6.6) we can analyse some physical aspects of 
the high-energy behaviour of the scattered nucleon. 

Neglecting the explicit influence of the measuring apparatus, the scatter- 
ing phase shift 6~((p)~) may be identified with arggt((p)~), integrating 
(6.6) between p and infinity gives, up to the sign, the result that 

6~(p) = �89 p- (6.7) 
Po 

where the (p)raverage has been replaced by p. Consequently the S-matrix 
approximately takes the form 

i 
p - -~ N(po - p) 

S , (p)  ~- (6.8) 
i 

p + ~ N(po - p) 

for Vo ~> �89 For this purpose the approximation lnx ~- (x - 1)ix valid for 
x ~> �89 and the approximation t g g z -  6, have been used. A more suitable 
form of the S-matrix may be obtained also by using--in the high-energy 
domain--the approximation 

mo 2 
Po -- P + ~-p (6.9) 

which is mathematically valid for v > [~/(2)/2] c. In the following we shall 
consider the expression (6.9) as a reasonable physical approximation to 
the energy for velocities which are, within the uncertainty bound, smaller 
than [~(2)/2] e too. In these conditions the S-matrix becomes 

. N  2 p2 _ z~-mo 

Sl(p) -- ~r (6.10) 
pZ + i~-mo; 

e I . 

Thus, the high-energy behaviour (6.6), assuring the existence of the 
threshold velocity vc, implies the existence of two S-matrix poles 

p(~+-) = •  - i) (6.11) 

placed in the second and fourth quadrant respectively of the complex 
p-plane. This fact signifies that, at high energies, there should exist, within 
the considered approximation, a superposition of resonance production-- 

30 
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described by the pole p~-~--and of resonance decay--described by the 
polep~ +~. But such behaviour in fact expresses a particle production process, 
so that the previous suppositions concerning the high-energy behaviour of 
the scattered nucleon, are, at least, qualitatively confirmed. Using again 
Po = ~/(p2 + rno 2) the energy and width of the resonance so implied are 
given by 

F 
p~e~ _~ 1227 MeV, ~ ~ 323 MeV (6.12) 

and this result is in relatively good agreement with that one obtained for 
the (weak) excitation of the N*-resonance. In this respect the interpretation 
from Section 3 concerning single-pion production is correct too, since it 
was experimentally proved that the cross-section for single-pion production 
is well approximated by the cross section of the N*-resonance excitation 
(Schultze, 1971). 

Calculating the energies corresponding to the previous threshold velocities 
one obtains energies near, or not much larger, than that of the N*- 
resonance. The nearest energy to that of the N*-resonance is that of 1235 
MeV corresponding to the threshold velocity v~. Summarising the previous 
results we may then consider that the threshold velocity v~ fulfills the 
following roles: (a) it is the velocity at which the space-time quanta realise 
their role as natural space-time units; (b) it is the threshold of resonance 
pionic production; (c) it is the upper velocity assuming compatibility of 
the binary time and Hermitian space. 

Using (6.8) and taking N = 4 it may similarly be proved that the com- 
patibility between the binary space and total time, the binary time and 
total space, the total space and total time is assured up to the threshold 
velocities 0.79c; 0.65c and 0.61c, respectively. We have to mention that, in 
the conditions in which space hermiticity is not assumed, the compatibility 
between binary space and binary time (i.e. the compatibility between the 
operators whose imprecisions are given by the real space quantum and real 
time quantum respectively) is assured as soon as N ~> 1, without the presence 
of any threshold velocity. 

Consequently, in connection with the existence of certain structural 
effects, a certain physical meaning may be attributed to the involved space- 
time quantum and/or to the corresponding threshold velocity. In this 
respect--in agreement with the above interpretations--a 'hadronic' 
meaning may be attributed to the real time quantum and also to the corre- 
sponding threshold velocity. 

Similarly, taking into consideration the remarks expressed by Jaffe & 
Shapiro (1972), we are able to attribute in a certain sense an 'electromag- 
netic' meaning to the total space quantum and to the corresponding 
threshold velocity of [~/(2)/2] c. However, further investigations are needed 
in order to clarify and to explain the physical meaning of the threshold 
velocities previously introduced. 
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7. Conclusions 

In this paper  the meaning and the role of  the space-time quanta have 
been analysed. In this respect it has been proved that there is the existence 
of space and time quanta that makes 'equivalence' relations to be non- 
transitive and vice versa. 

The space-time quantization may be used in order to perform not only 
qualitative, but even quantitative predictions concerning the high-energy 
behaviour of  the scattered nucleon. The existence of  threshold velocities-- 
which have the role of  preserving the initial individuality of the quanto- 
mechanical system--has to be taken into account. Beyond threshold 
velocity, particle production is implied. Consequently we have to perform 
a new space-time description suitable to the changed experimental situation. 

With the increase of  the energy the space-time quanta tend to realise 
their role of  natural space-time units. This role once fulfilled, the physical 
system, i.e. the scattered nucleon, ceases to exist within the initial structure 
constants and also within the initial space-time description. 
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